Objective: Suppressor of cytokine signalling (SOCS) proteins constitute a class of intracellular proteins that are key physiological regulators of immune cell function. It has previously been shown that antigen-presenting cells (APCs) overexpressing SOCS3 steer T helper immune responses and protect against experimental arthritis. A study was undertaken to investigate the contribution of SOCS3 in regulating invariant natural killer T (iNKT) cell responses during collagen-induced arthritis (CIA).
Methods: DBA/1 mice were immunised with type II collagen and adenoviruses encoding SOCS3 were administered intravenously before the clinical onset of arthritis. Murine APCs overexpressing SOCS3 were co-cultured with an iNKT cell hybridoma and interleukin 2 (IL-2) release was measured by Luminex multi-analyte technology. The frequency and activation of primary iNKT cells was assessed by flow cytometry. Murine APCs were analysed for cytokine and CD1d expression following viral SOCS3 gene transfer.
Results: Viral overexpression of SOCS3 in APCs resulted in reduced activation of the iNKT cell hybridoma. Importantly, during initiation of CIA, adenovirus-mediated overexpression of SOCS3 in hepatic and splenic APCs inhibited iNKT cell expansion in both organs. The iNKT cell population from SOCS3-treated mice showed low expression of the early activation marker CD69 and primary liver iNKT cells produced less interferon γ and IL-4 upon α-galactosylceramide stimulation. No differences in CD1d surface expression were observed, but SOCS3-transduced APCs produced decreased levels of proinflammatory cytokines and increased levels of IL-10.
Conclusion: These results demonstrate a critical role for SOCS3 in controlling the immunostimulatory capacities of APCs, which has direct implications for the effector function of iNKT cells during arthritis.