Introduction: Pulmonary hypertension (PH) is a rapidly progressive and fatal disease. In recent years, despite drug treatment made significant progress, the prognosis of patients with advanced PH remains extremely poor. The authors implanted bone marrow-derived mesenchymal stem cells (BMSCs) intravenously into the PH model rats and observed the effect of MSCs on right ventricular (RV) impairments.
Methods: BMSCs were isolated, cultured from bone marrow of rats and stained with the cross-linkable membrane dye in vitro. One week after, a PH model was induced by subcutaneous injection of monocrotaline, the animals were randomly divided into 4 groups (n = 20 in each group): I, control; II, MSCs implantation; III, PH and IV, PH + MSCs implantation. Two weeks after MSCs implantation, the authors observed the MSC survival and transformation by immunofluorescence microscopy. On the other hand, RV hypertrophy and the elevation of systolic pressure were detected by echocardiography.
Result: Three weeks after monocrotaline injection, RV systolic pressure, mean right ventricular pressure and mean pulmonary arterial pressure were significantly elevated in group III than in group I and II (P < 0.05) but significantly lower in group IV than in group III (P < 0.05). These results showed that implantation of MSCs could improve RV impairments caused by experimental PH. Histochemical results confirmed that transplanted MSCs were still alive after 2 weeks and part of the cells could differentiate into pulmonary vascular endothelial cells.
Conclusion: Intravenous implantation of MSCs could significantly reduce or even reverse the progression of MCT-induced PH, improve cardiac function and hemodynamics.