Chronic myelogenous leukemia (CML) is characterized by a reciprocal chromosomal translocation (9;22) that generates the Bcr-Abl fusion gene. BCR-ABL transforming activity is mediated by critical downstream signaling pathways that are aberrantly activated by tyrosine kinases. However, the mechanisms of BCR-ABL anti-apoptotic effects and the signaling pathways by which BCR-ABL influences apoptosis in BCR-ABL-expressing cells are poorly defined. In this study, we found that treatment with ABL kinase inhibitors or depletion of BCR-ABL induced the expression of RAB45 messenger RNA and protein and induced apoptosis via reduction of mitochondrial membrane potential and p38 activation in CML cell lines and BCR-ABL(+) progenitor cells from CML patients. Overexpressed RAB45 induced the activation of caspases-3 and -9 and reduced the expression of Survivin, XIAP, c-IAP1 and c-IAP2 in CML cells. Moreover, in colony-forming cells derived from CML-aldehyde dehydrogenase(hi)/CD34(+) cells, treatment with ABL kinase inhibitors induced RAB45 expression and reduced mitochondrial membrane potential, resulting in inhibited colony formation of Bcr-Abl(+) progenitor cells. The overexpression of RAB45 significantly decreased colony numbers and induced apoptosis through the activation of caspases-3 and -9. Furthermore, the overexpression of RAB45 increased the phosphorylation levels of p38, resulting in the induction of apoptosis and inhibition of proliferation of CML progenitor cells. Our results identify a new signaling molecule involved in BCR-ABL modulation of apoptosis and suggest that RAB45 induction strategies may have therapeutic utility in patients with CML.