Nitric oxide and protein phosphatase 2A provide novel therapeutic opportunities in ER-negative breast cancer

Trends Pharmacol Sci. 2011 Nov;32(11):644-51. doi: 10.1016/j.tips.2011.07.001. Epub 2011 Sep 4.

Abstract

Basal-like breast cancer is an aggressive disease with limited therapeutic options because these tumors frequently express the 'triple-negative' phenotype. We have recently reported that inducible nitric oxide synthase (NOS2) is a strong predictor of survival in patients with estrogen receptor negative [ER(-)] breast cancer, and that NOS2 expression is correlated with a basal-like phenotype. Recent reports also describe the pro-tumor effects of NO in breast and many other types of cancer. NO promotes cancer progression by activating several oncogenic signaling pathways such as extracellular signal-regulated kinases (ERK)-1/2, phosphoinositide 3-kinases (PI3K)/Akt, and c-Myc. Protein phosphatase 2A (PP2A) is a tumor suppressor that negatively regulates the same cancer-related signaling pathways that are activated by NO. PP2A activity is suppressed in tumor cells, but potential pharmacological agents have recently been described to increase PP2A activity in ER(-) breast cancer cells. We examine here the various functions of NO and PP2A in breast cancer and propose a novel mechanism by which activation of PP2A antagonizes NO signaling that promotes ER(-) breast cancer.

Publication types

  • Review

MeSH terms

  • Breast Neoplasms / drug therapy*
  • Breast Neoplasms / genetics
  • Breast Neoplasms / metabolism
  • Breast Neoplasms / pathology
  • Extracellular Signal-Regulated MAP Kinases / metabolism
  • Female
  • Humans
  • Molecular Targeted Therapy / methods*
  • Neoplasms / drug therapy
  • Neoplasms / genetics
  • Neoplasms / metabolism
  • Neoplasms / pathology
  • Nitric Oxide / metabolism*
  • Protein Phosphatase 2 / metabolism*
  • Receptors, Estrogen / physiology*
  • Signal Transduction
  • Tumor Cells, Cultured

Substances

  • Receptors, Estrogen
  • Nitric Oxide
  • Extracellular Signal-Regulated MAP Kinases
  • Protein Phosphatase 2