The transmission of light through a metallic film stack on a transparent substrate, perforated with a periodic array of cylindrical holes/nanocavities, is studied. The structure is fabricated by using self-assembled nanosphere lithography. Since one layer in the film stack is made of a ferromagnetic metal (iron), exposure of the structure to a solution containing iron oxide nanoparticles causes nanoparticle accumulation inside the nanocavities. This changes the dielectric constant inside the nanocavities and thus affects the light transmission. Simulations are in good agreement with experiment, and show large sensitivity of the response to the amount of iron oxide nanoparticles deposited. This could be used in various sensor applications.
Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.