Multifunctional nanoprobes are designed to own various functions such as tumor targeting, imaging and selective therapy, which offer great promise for the future of cancer prevention, diagnosis, imaging and treatment. Herein, silica was applied to replace cetyltrimethylammonium bromide (CTAB) molecules on the surface of gold nanorods (GNRs) by the classic Stöber method, thus eliminating their cytotoxicity and improving their biocompatibility. Folic acid molecule was covalently anchored on the surface of GNRs with silane coupling agent. The resultant folic acid-conjugated silica-modified GNRs show highly selective targeting, enhanced radiation therapy (RT) and photo-thermal therapy (PTT) effects on MGC803 gastric cancer cells, and also exhibited strong X-ray attenuation for in vivo X-ray and computed tomography (CT) imaging. In conclusion, the as-prepared nanoprobe is a good candidate with excellent imaging and targeting ability for X-ray/CT imaging-guided targeting dual-mode enhanced RT and PTT.
Copyright © 2011 Elsevier Ltd. All rights reserved.