Anoxia can occur in crop fields when flooding forms a physical barrier that reduces oxygen availability. Rice, but not wheat, can germinate and elongate its coleoptile under anoxia, providing an excellent model for understanding mechanisms of anoxia tolerance. We have shown differential molecular responses of rice and wheat coleoptiles to anoxia and discovered novel metabolic adaptations in amino acid metabolism for tissue tolerance. In this addendum, we elaborate on our discussion to speculate on the functions of differentially regulated proteins and their possible roles in selective transcription and translation, alternative elongation strategies and preparedness for exposure to air. In addition, it is thought that rapid growth is a stress avoidance strategy; if adequate coleoptile growth occurs then plants can outgrow floodwaters to resume or begin aerobic respiration. An innate response mechanism to the arrival of air, and the oxidative stress inherent to this, would therefore be necessary in survival beyond the alleviation of anoxia. Thus, we emphasize the importance of recognizing anoxia as a multi-stage stress where responses otherwise considered counter-intuitive may have evolved as preparative defenses for when exposure to air occurs.