Hypoxia induces downregulation of PPAR-γ in isolated pulmonary arterial smooth muscle cells and in rat lung via transforming growth factor-β signaling

Am J Physiol Lung Cell Mol Physiol. 2011 Dec;301(6):L899-907. doi: 10.1152/ajplung.00062.2011. Epub 2011 Sep 16.

Abstract

Chronic hypoxia activates transforming growth factor-β (TGF-β) signaling and leads to pulmonary vascular remodeling. Pharmacological activation of peroxisome proliferator-activated receptor-γ (PPAR-γ) has been shown to prevent hypoxia-induced pulmonary hypertension and vascular remodeling in rodent models, suggesting a vasoprotective effect of PPAR-γ under chronic hypoxic stress. This study tested the hypothesis that there is a functional interaction between TGF-β/Smad signaling pathway and PPAR-γ in isolated pulmonary artery small muscle cells (PASMCs) under hypoxic stress. We observed that chronic hypoxia led to a dramatic decrease of PPAR-γ protein expression in whole lung homogenates (rat and mouse) and hypertrophied pulmonary arteries and isolated PASMCs. Using a transgenic model of mouse with inducible overexpression of a dominant-negative mutant of TGF-β receptor type II, we demonstrated that disruption of TGF-β pathway significantly attenuated chronic hypoxia-induced downregulation of PPAR-γ in lung. Similarly, in isolated rat PASMCs, antagonism of TGF-β signaling with either a neutralizing antibody to TGF-β or the selective TGF-β receptor type I inhibitor SB431542 effectively attenuated hypoxia-induced PPAR-γ downregulation. Furthermore, we have demonstrated that TGF-β1 treatment suppressed PPAR-γ expression in PASMCs under normoxia condition. Chromatin immunoprecipitation analysis showed that TGF-β1 treatment significantly increased binding of Smad2/3, Smad4, and the transcriptional corepressor histone deacetylase 1 to the PPAR-γ promoter in PASMCs. Conversely, treatment with the PPAR-γ agonist rosiglitazone attenuated TGF-β1-induced extracellular matrix molecule expression and growth factor in PASMCs. These data provide strong evidence that activation of TGF-β/Smad signaling, via transcriptional suppression of PPAR-γ expression, mediates chronic hypoxia-induced downregulation of PPAR-γ expression in lung.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Hypoxia
  • Cell Movement
  • Cells, Cultured
  • Down-Regulation*
  • Extracellular Matrix / metabolism
  • Histone Deacetylase 1 / metabolism
  • Hypoxia / genetics
  • Hypoxia / metabolism*
  • Lung / blood supply*
  • Lung / metabolism
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mice, Transgenic
  • Muscle, Smooth, Vascular / metabolism
  • Muscle, Smooth, Vascular / pathology
  • Myocytes, Smooth Muscle / metabolism*
  • PPAR gamma / agonists
  • PPAR gamma / genetics
  • PPAR gamma / metabolism*
  • Protein Serine-Threonine Kinases / antagonists & inhibitors
  • Protein Serine-Threonine Kinases / genetics
  • Protein Serine-Threonine Kinases / metabolism
  • Pulmonary Artery / metabolism*
  • Pulmonary Artery / pathology
  • Rats
  • Rats, Sprague-Dawley
  • Receptor, Transforming Growth Factor-beta Type I
  • Receptor, Transforming Growth Factor-beta Type II
  • Receptors, Transforming Growth Factor beta / antagonists & inhibitors
  • Receptors, Transforming Growth Factor beta / genetics
  • Receptors, Transforming Growth Factor beta / metabolism
  • Signal Transduction
  • Smad Proteins / metabolism
  • Transcription, Genetic
  • Transforming Growth Factor beta / metabolism*
  • Transforming Growth Factor beta / pharmacology

Substances

  • PPAR gamma
  • Receptors, Transforming Growth Factor beta
  • Smad Proteins
  • Transforming Growth Factor beta
  • Protein Serine-Threonine Kinases
  • Receptor, Transforming Growth Factor-beta Type I
  • Receptor, Transforming Growth Factor-beta Type II
  • Tgfbr1 protein, rat
  • Hdac1 protein, rat
  • Histone Deacetylase 1