A great deal of interest has arisen recently with respect to human mesenchymal stem cells (MSCs), due to their broad therapeutic potential. However, the safety and efficacy of MSCs expanded ex vivo for clinical applications remain a concern. In this article, we establish a standardized process for manufacture of human umbilical cord-derived MSCs (UC-MSCs), which encompasses donor screening and testing, recovery, two-stage expansion, and administration. The biological properties and safety of UC-MSCs were then characterized and tested. The safety data from use in human patients have also been reported. After clinical-scale expansion, a yield of 1.03-3.78 × 10(8) MSCs was achieved in 10 batch manufacturing runs. The biological properties, such as plastic adherence, morphology, specific surface antigen (CD105, CD73, CD90, positive ≥ 95%; CD45, CD34, CD31, CD11b, CD19, HLA-DR, negative ≤2%), and multipotent differentiation potential (osteogenesis and adipogenesis) were retained. Bacterial and mycoplasma tests were negative and endotoxin levels were lower than 2 EU/ml. No adverse events were noted in two patients treated with intravenously and/or intrathecally administered MSCs. The data obtained indicate that banking UC-MSCs for clinical use is feasible.