In many case-control genetic association studies, a set of correlated secondary phenotypes that may share common genetic factors with disease status are collected. Examination of these secondary phenotypes can yield valuable insights about the disease etiology and supplement the main studies. However, due to unequal sampling probabilities between cases and controls, standard regression analysis that assesses the effect of SNPs (single nucleotide polymorphisms) on secondary phenotypes using cases only, controls only, or combined samples of cases and controls can yield inflated type I error rates when the test SNP is associated with the disease. To solve this issue, we propose a Gaussian copula-based approach that efficiently models the dependence between disease status and secondary phenotypes. Through simulations, we show that our method yields correct type I error rates for the analysis of secondary phenotypes under a wide range of situations. To illustrate the effectiveness of our method in the analysis of real data, we applied our method to a genome-wide association study on high-density lipoprotein cholesterol (HDL-C), where "cases" are defined as individuals with extremely high HDL-C level and "controls" are defined as those with low HDL-C level. We treated 4 quantitative traits with varying degrees of correlation with HDL-C as secondary phenotypes and tested for association with SNPs in LIPG, a gene that is well known to be associated with HDL-C. We show that when the correlation between the primary and secondary phenotypes is >0.2, the P values from case-control combined unadjusted analysis are much more significant than methods that aim to correct for ascertainment bias. Our results suggest that to avoid false-positive associations, it is important to appropriately model secondary phenotypes in case-control genetic association studies.