Objectives: To determine the contribution of transmission clusters to transmitted drug resistance (TDR) in newly diagnosed antiretroviral-naive HIV-1-infected patients in Northern Greece during 2000-07.
Methods: The prevalence of TDR was estimated in 369 individuals who were diagnosed with HIV-1 infection in the period 2000-07 at the National AIDS Reference Laboratory of Northern Greece. Phylogenetic analysis was performed using a maximum likelihood method on partial pol sequences. TDR was defined in accordance with the surveillance drug resistance mutation list (2009 update).
Results: The overall prevalence of TDR in our population was 12.5% [46/369, 95% confidence interval (CI) 9.1%-15.8%], comprising 7.6% (28/369) resistant to nucleoside reverse transcriptase inhibitors, 5.4% (20/369) resistant to non-nucleoside reverse transcriptase inhibitors and 3.3% (12/369) resistant to protease inhibitors. Dual class resistance was identified in 3.8% (14/369). Infection with subtype A was the sole predictor associated with TDR in multivariate analysis (odds ratio 2.15, 95% CI 1.10-4.19, P = 0.025). Phylogenetic analyses revealed three statistically robust transmission clusters involving drug-resistant strains, including one cluster of 12 patients, 10 of whom were infected with a strain carrying both T215 revertants and Y181C mutations.
Conclusions: Our findings underline the substantial impact of transmission networks on TDR in our population.