Diffusion tensor imaging (DTI) was performed on 25 patients with neurocysticercosis (NCC). The aim of this study was to investigate the changes in DTI measures during the evolutionary course of NCC lesions from vesicular to calcified stage in the brain. DTI measures were quantified from the NCC lesions of all patients. On the basis of conventional imaging findings, NCC lesions were classified into vesicular, vesicular colloidal, granular nodular and calcified stages. Significant inverse correlation was observed between the evolutionary stage of NCC lesion and mean diffusivity (MD; r=-0.748, P<0.001) and spherical anisotropy (CS; r=-0.585, P<.001) values. Significant direct correlations were observed between evolutionary stages of NCC lesion and mean fractional anisotropy (FA; r=0.575, P<0.001), linear anisotropy (CL; r=0.478, p<0.001) and planar anisotropy (CP; r=0.561, p<0.001) values. Successive decrease in MD values calculated from NCC lesions was observed, moving from vesicular to granular nodular stage. On FA, CL and CP maps, a significant increase in signal intensity value was observed in calcified as compared to other stages. We conclude that DTI measures may indicate the evolutionary changes in NCC from vesicular to calcified stage.
Copyright © 2012 Elsevier Inc. All rights reserved.