Aims: In this study, the immune-modulatory and protective efficacy of using an interleukin-2 (IL-2) expression plasmid as a genetic adjuvant and chitosan (CS) nanoparticles as vectors to enhance a Tp92 DNA vaccine candidate were investigated in a Treponema pallidum (Tp) rabbit challenge model.
Results: CS vectoring of pTp92 or pIL-2 were both demonstrated to augment anti-Tp92 antibody levels induced by pTp92 DNA vaccines. Interestingly, the combination of CS vectored Tp92 and pIL-2 led to the greatest enhancements of anti-Tp92 antibodies and T-cell proliferation (p < 0.05). At week 10 after the first immunization, 15 of the 18 rabbits in each group were challenged with Tp Nichols strain and monitored for skin lesions and ulcer lesions. Ratios of positive skin lesions and ratios of ulcer lesions in groups immunized with pTp92 were significantly lower than those of the empty vector or PBS groups (p < 0.05), demonstrating that pTp92 immunization elicited significant protective efficacy against the Tp Nichols strain challenge. CS vectored and pIL-2 adjuvanted pTp92 immunized animals exhibited the lowest rates of positive skin and ulcer lesions.
Methods: Male New Zealand white rabbits were randomly assigned to groups (n = 18/group) and immunized intramuscularly with pTp92 based plasmid DNA constructs (100 μg of DNA/rabbit/immunization). Two weeks before Tp challenge (Week 8), three rabbits from each group were used to determine cytokine measurements and fifteen rabbits from each group were used for Tp challenge studies.
Conclusions: Intramuscular injection of pTp92 induced strong humoral and cellular immune responses and conferred protection from Tp challenge in rabbits. The use of CS as a pTp92 vector or pIL-2 as an adjuvant achieved a superior level of protective efficacy against Tp challenge, however CS vectored, IL-2 adjuvanted pTp92 immunization conferred the highest level of protective efficacy.