MicroRNAs (miRNA, miR) have been reported as cancer biomarkers that regulate tumor suppressor genes. Hence, simultaneous detecting and inhibiting of miRNA function will be useful as a cancer theragnostics probe to minimize side effects and invasiveness. In this study, we developed a cancer-targeting therangostics probe in a single system using an AS1411 aptamer - and miRNA-221 molecular beacon (miR-221 MB)-conjugated magnetic fluorescence (MF) nanoparticle (MFAS miR-221 MB) to simultaneously target to cancer tissue, image intracellularly expressed miRNA-221 and treat miRNA-221-involved carcinogenesis. AS1411 aptamer-conjugated MF (MFAS) nanoparticles displayed a great selectivity and delivery into various cancer cell lines. The miR-221 MB detached from the MFAS miR-221 MB in the cytoplasm of C6 cells clearly imaged miRNA-221 biogenesis and simultaneously resulted in antitumor therapeutic effects by inhibiting miRNA function, indicating a successful astrocytoma-targeting theragnostics. MFAS miRNA MB can be easily applied to other cancers by simply changing a targeted miRNA highly expressed in cancers.
Copyright © 2011 Elsevier Ltd. All rights reserved.