Aims: The interaction between coronary β(2)-adrenoreceptors and segmental plaque burden is complex and poorly understood in humans. We aimed to validate intracoronary (IC) salbutamol as a novel endothelium-dependent vasodilator utilizing intravascular ultrasound (IVUS), and thus assess relationships between coronary β(2)-adrenoreceptors, regional plaque burden and segmental endothelial function.
Methods and results: In 29 patients with near-normal coronary angiograms, IVUS-upon-Doppler Flowire imaging protocols were performed. Protocol 1: incremental IC salbutamol (0.15, 0.30, 0.60 μg/min) infusions (15 patients, 103 segments); protocol 2: salbutamol (0.30 μg/min) infusion before and after IC administration of N(G)-monomethyl-L-arginine (L-NMMA) (10 patients, 82 segments). Vehicle infusions (IC dextrose) were performed in 4 patients (21 segments). Macrovascular response [% change segmental lumen volume (ΔSLV)] and plaque burden [per cent atheroma volume (PAV)] were studied in 5-mm coronary segments. Microvascular response [per cent change in coronary blood flow (ΔCBF)] was calculated following each infusion. Intracoronary salbutamol demonstrated significant dose-response ΔSLV and ΔCBF from baseline, respectively (0.15 μg/min: 3.5 ± 1.3%, 28 ± 14%, P = 0.04, P = NS; 0.30 μg/min: 5.5 ± 1.4%, 54 ± 17%, P = 0.001, P < 0.0001; 0.60 μg/min: 4.8 ± 1.6%, 66 ± 15%, P = 0.02, P < 0.0001), with ΔSLV responses further exemplified in low vs. high plaque burden groups. Salbutamol vasomotor responses were suppressed by l-NMMA, supporting nitric oxide-dependent mechanisms. Vehicle infusions resulted in no significant ΔSLV or ΔCBF. Multivariate analysis including conventional cardiovascular risk factors, PAV, segmental remodelling and plaque eccentricity indices identified PAV as the only significant predictor of a ΔSLV to IC salbutamol (coefficient -0.18, 95% CI -0.32 to -0.044, P = 0.015). Conclusions Intracoronary salbutamol is a novel endothelium-dependent epicardial and microvascular coronary vasodilator. Intravascular ultrasound-derived regional plaque burden is a major determinant of segmental coronary endothelial function.