Magnetic resonance imaging (MRI) is the radiological examination method of choice for evaluating hypothalamo-pituitary-related endocrine disease and is considered essential in the assessment of patients with suspected hypothalamo-pituitary pathology. Physicians involved in the care of such patients have, in MRI, a valuable tool that can aid them in determining the pathogenesis of their patients' underlying pituitary conditions. Indeed, the use of MRI has led to an enormous increase in our knowledge of pituitary morphology, improving, in particular, the differential diagnosis of hypopituitarism. Specifically, MRI allows detailed and precise anatomical study of the pituitary gland by differentiating between the anterior and posterior pituitary lobes. MRI recognition of pituitary hyperintensity in the posterior part of the sella, now considered a marker of neurohypophyseal functional integrity, has been the most striking finding in the diagnosis and understanding of certain forms of 'idiopathic' and permanent growth hormone deficiency (GHD). Published data show a number of correlations between pituitary abnormalities as observed on MRI and a patient's endocrine profile. Indeed, several trends have emerged and have been confirmed: (i) a normal MRI or anterior pituitary hypoplasia generally indicates isolated growth hormone deficiency that is mostly transient and resolves upon adult height achievement; (ii) patients with multiple pituitary hormone deficiencies (MPHD) seldom show a normal pituitary gland; and (iii) the classic triad of ectopic posterior pituitary, pituitary stalk hypoplasia/agenesis and anterior pituitary hypoplasia is more frequently reported in MPHD patients and is generally associated with permanent GHD. Pituitary abnormalities have also been reported in patients with hypopituitarism carrying mutations in several genes encoding transcription factors. Establishing endocrine and MRI phenotypes is extremely useful for the selection and management of patients with hypopituitarism, both in terms of possible genetic counselling and in the early diagnosis of evolving anterior pituitary hormone deficiencies. Going forward, neuroimaging techniques are expected to progressively expand and improve our knowledge and understanding of pituitary diseases.
© 2011 Blackwell Publishing Ltd.