Structure of transfer RNAs: similarity and variability

Wiley Interdiscip Rev RNA. 2012 Jan-Feb;3(1):37-61. doi: 10.1002/wrna.103. Epub 2011 Sep 28.

Abstract

Transfer RNAs (tRNAs) are ancient molecules whose origin goes back to the beginning of life on Earth. Key partners in the ribosome-translation machinery, tRNAs read genetic information on messenger RNA and deliver codon specified amino acids attached to their distal 3'-extremity for peptide bond synthesis on the ribosome. In addition to this universal function, tRNAs participate in a wealth of other biological processes and undergo intricate maturation events. Our understanding of tRNA biology has been mainly phenomenological, but ongoing progress in structural biology is giving a robust physico-chemical basis that explains many facets of tRNA functions. Advanced sequence analysis of tRNA genes and their RNA transcripts have uncovered rules that underly tRNA 2D folding and 3D L-shaped architecture, as well as provided clues about their evolution. The increasing number of X-ray structures of free, protein- and ribosome-bound tRNA, reveal structural details accounting for the identity of the 22 tRNA families (one for each proteinogenic amino acid) and for the multifunctionality of a given family. Importantly, the structural role of post-transcriptional tRNA modifications is being deciphered. On the other hand, the plasticity of tRNA structure during function has been illustrated using a variety of technical approaches that allow dynamical insights. The large range of structural properties not only allows tRNAs to be the key actors of translation, but also sustain a diversity of unrelated functions from which only a few have already been pinpointed. Many surprises can still be expected.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Base Sequence
  • Humans
  • Molecular Sequence Data
  • Nucleic Acid Conformation
  • RNA, Transfer / chemistry*

Substances

  • RNA, Transfer