Natural form of noncytolytic flexible human Fc as a long-acting carrier of agonistic ligand, erythropoietin

PLoS One. 2011;6(9):e24574. doi: 10.1371/journal.pone.0024574. Epub 2011 Sep 16.

Abstract

Human IgG1 Fc has been widely used as a bioconjugate, but exhibits shortcomings, such as antibody- and complement-mediated cytotoxicity as well as decreased bioactivity, when applied to agonistic proteins. Here, we constructed a nonimmunogenic, noncytolytic and flexible hybrid Fc (hyFc) consisting of IgD and IgG4, and tested its function using erythropoietin (EPO) conjugate, EPO-hyFc. Despite low amino acid homology (20.5%) between IgD Fc and IgG4 Fc, EPO-hyFc retained "Y-shaped" structure and repeated intravenous administrations of EPO-hyFc into monkeys did not generate EPO-hyFc-specific antibody responses. Furthermore, EPO-hyFc could not bind to FcγR I and C1q in contrast to EPO-IgG1 Fc. In addition, EPO-hyFc exhibited better in vitro bioactivity and in vivo bioactivity in rats than EPO-IgG1 Fc, presumably due to the high flexibility of IgD. Moreover, the mean serum half-life of EPO-hyFc(H), a high sialic acid content form of EPO-hyFc, was approximately 2-fold longer than that of the heavily glycosylated EPO, darbepoetin alfa, in rats. More importantly, subcutaneous injection of EPO-hyFc(H) not only induced a significantly greater elevation of serum hemoglobin levels than darbepoetin alfa in both normal rats and cisplatin-induced anemic rats, but also displayed a delayed time to maximal serum level and twice final area-under-the-curve (AUC(last)). Taken together, hyFc might be a more attractive Fc conjugate for agonistic proteins/peptides than IgG1 Fc due to its capability to elongate their half-lives without inducing host effector functions and hindering bioactivity of fused molecules. Additionally, a head-to-head comparison demonstrated that hyFc-fusion strategy more effectively improved the in vivo bioactivity of EPO than the hyperglycosylation approach.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Artificial Gene Fusion / methods*
  • Cell Line
  • Darbepoetin alfa
  • Erythropoietin / analogs & derivatives
  • Erythropoietin / genetics*
  • Erythropoietin / metabolism*
  • Erythropoietin / pharmacokinetics
  • Erythropoietin / pharmacology
  • Humans
  • Immunoglobulin Fc Fragments / genetics*
  • Immunoglobulin Isotypes / chemistry
  • Ligands
  • Male
  • Models, Molecular
  • Protein Conformation
  • Rats
  • Rats, Sprague-Dawley
  • Recombinant Fusion Proteins / genetics
  • Recombinant Fusion Proteins / metabolism
  • Recombinant Fusion Proteins / pharmacokinetics
  • Recombinant Fusion Proteins / pharmacology

Substances

  • Immunoglobulin Fc Fragments
  • Immunoglobulin Isotypes
  • Ligands
  • Recombinant Fusion Proteins
  • Erythropoietin
  • Darbepoetin alfa