Selective N-alkylation of β-alanine facilitates the synthesis of a poly(amino acid)-based theranostic nanoagent

Biomacromolecules. 2011 Nov 14;12(11):3917-27. doi: 10.1021/bm2009334. Epub 2011 Sep 30.

Abstract

The development of functional amino acid-based polymeric materials is emerging as a platform to create biodegradable and nontoxic nanomaterials for medical and biotechnology applications. In particular, facile synthetic routes for these polymers and their corresponding polymeric nanomaterials would have a positive impact in the development of novel biomaterials and nanoparticles. However, progress has been hampered by the need to use complex protection-deprotection methods and toxic phase transfer catalysts. In this study, we report a facile, single-step approach for the synthesis of an N-alkylated amino acid as an AB-type functional monomer to generate a novel pseudo-poly(amino acid), without using the laborious multistep, protection-deprotection methods. This synthetic strategy is reproducible, easy to scale up, and does not produce toxic byproducts. In addition, the synthesized amino acid-based polymer is different from conventional linear polymers as the butyl pendants enhance its solubility in common organic solvents and facilitate the creation of hydrophobic nanocavities for the effective encapsulation of hydrophobic cargos upon nanoparticle formation. Within the nanoparticles, we have encapsulated a hydrophobic DiI dye and a therapeutic drug, Taxol. In addition, we have conjugated folic acid as a folate receptor-targeting ligand for the targeted delivery of the nanoparticles to cancer cells expressing the folate receptor. Cell cytotoxicity studies confirm the low toxicity of the polymeric nanoparticles, and drug-release experiments with the Taxol-encapsulated nanoparticles only exhibit cytotoxicity upon internalization into cancer cells expressing the folate receptor. Taken together, these results suggested that our synthetic strategy can be useful for the one-step synthesis of amino acid-based small molecules, biopolymers, and theranostic polymeric nanoagents for the targeted detection and treatment of cancer.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alkylation
  • Antineoplastic Agents, Phytogenic / pharmacokinetics
  • Antineoplastic Agents, Phytogenic / pharmacology
  • Biopolymers
  • Cell Line, Tumor
  • Fluorescent Dyes / pharmacokinetics
  • Folic Acid / chemistry
  • Folic Acid Transporters / metabolism
  • Humans
  • Hydrophobic and Hydrophilic Interactions
  • Light
  • Molecular Weight
  • Nanocapsules / chemistry*
  • Neoplasms / diagnosis
  • Neoplasms / drug therapy
  • Paclitaxel / pharmacokinetics
  • Paclitaxel / pharmacology
  • Particle Size
  • Peptides / chemical synthesis*
  • Peptides / pharmacokinetics
  • Scattering, Radiation
  • beta-Alanine / chemistry*

Substances

  • Antineoplastic Agents, Phytogenic
  • Biopolymers
  • Fluorescent Dyes
  • Folic Acid Transporters
  • Nanocapsules
  • Peptides
  • beta-Alanine
  • polyalanine
  • Folic Acid
  • Paclitaxel