We investigate the effect of bladder-derived acellular matrix (ACM) on bone marrow mesenchymal stem cells (BM-MSC) growth, survival, and differentiation, and evaluate the effect of collagen I and IV on BM-MSC differentiation potential to SMC. BM-MSCs isolated from CD1(_) mice were characterized by surface markers and differentiation into different lineages. BM-MSC SMC potential was further evaluated in stem cell medium alone or supplemented with TGF-β1 and recombinant human platelet-derived growth factor (PDGF-BB) on plastic, collagen I and IV using western blot. Furthermore, BM-MSCs were seeded on porcine derived ACM-fortified with hyaluronic acid and cultured in Mesencult+-growth factors, bone, or fat induction media for 3 weeks. Seeded constructs were evaluated by H&E, Ki67 assay, Oil red O, and Alizarin red stain. SMC differentiation was semiquantified via immunohistochemistry. BM-MSCs differentiated into fat and bone when induced. In Mesencult, BM-MSCs differentiated into SMC, expressing α-SMA, calponin, and MHC. BM-MSCs cultured on collagen I and IV reduced expression of SMC and MHC compared to plastic. On ACM-HA, BM-MSCs maintained multipotent state by differentiating to bone and fat when induced. In Mesencult, BM-MSC-seeded ACM-HA expressed α-SMA, calponin, and MHC. TGF-β1 and PDGF-BB enhanced SMC differentiation on collagens and ACM-HA. SMC proteins expression by BM-MSC varies depending on culture substrate. SMC markers are expressed higher on plastic and lower on collagen I, IV, and ACM-HA, suggesting these substrates preferentially maintain undifferentiated state of BM-MSC, which could be advantageous for incorporation of cell-seeded grafts to permit host modulation of tissue regeneration.
Copyright © 2011 Wiley Periodicals, Inc.