Mechanical characterization and biocompatibility of a novel reinforced fascia patch for rotator cuff repair

J Biomed Mater Res A. 2011 Nov;99(2):221-30. doi: 10.1002/jbm.a.33179. Epub 2011 Aug 16.

Abstract

To provide mechanical augmentation for rotator cuff repair, it is necessary (though perhaps not sufficient) that scaffolds have tendon-like material and suture retention properties, be applied to the repair in a surgically appropriate manner, and maintain their mechanical properties for an acceptable period of time following surgery. While allograft fascia lata has material, structural, and biochemical properties similar to tendon tissue, its poor suture retention properties abrogates its potential as an augmentation device. The goal of this work was to design a novel reinforced fascia patch with suture retention and stiffness properties adequate to provide mechanical augmentation for rotator cuff repair. Fascia was reinforced by stitching with PLLA or PLLA/PGA polymer braids. Reinforced fascia patches had a maximum construct load greater than (or equal to) the suture retention properties of human rotator cuff tendon (∼250N) at time zero and after in vivo implantation for 12 weeks in a rat subcutaneous model. The patches were able to withstand the 2500 loading cycles projected for the early post-operative period. The patches also demonstrated biocompatibility with the host using a rat abdominal wall defect model. These studies suggest the potential use of reinforced fascia patches to provide mechanical augmentation, minimize tendon retraction and possibly reduce the incidence of rotator cuff repair failure.

Publication types

  • Evaluation Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Abdominal Wall / surgery
  • Adolescent
  • Adult
  • Animals
  • Biocompatible Materials / metabolism*
  • Fasciotomy*
  • Humans
  • Lactic Acid / chemistry
  • Male
  • Materials Testing
  • Middle Aged
  • Polyesters
  • Polyglycolic Acid / chemistry
  • Polylactic Acid-Polyglycolic Acid Copolymer
  • Polymers / chemistry
  • Rats
  • Rats, Sprague-Dawley
  • Rotator Cuff / surgery*
  • Stress, Mechanical
  • Suture Techniques / instrumentation*
  • Tensile Strength
  • Wound Healing
  • Young Adult

Substances

  • Biocompatible Materials
  • Polyesters
  • Polymers
  • Polylactic Acid-Polyglycolic Acid Copolymer
  • Polyglycolic Acid
  • Lactic Acid
  • poly(lactide)