Interfacial mechanisms governing cyclopentane clathrate hydrate adhesion/cohesion

Phys Chem Chem Phys. 2011 Nov 28;13(44):19796-806. doi: 10.1039/c1cp21907c. Epub 2011 Oct 10.

Abstract

The present work uses a micromechanical force apparatus to directly measure cyclopentane clathrate hydrate cohesive force and hydrate-steel adhesive force, as a function of contact time, contact force and temperature. We present a hydrate interparticle force model, which includes capillary and sintering contributions and is based on fundamental interparticle force theories. In this process, we estimate the cyclopentane hydrate tensile strength to be approximately 0.91 MPa. This hydrate interparticle force model also predicts the effect of temperature on hydrate particle cohesion force. Finally, we present the first direct measurements of hydrate cohesive force in the gas phase to be 9.1 ± 2.1 mN/m at approximately 3 °C (as opposed to 4.3 ± 0.4 mN/m in liquid cyclopentane).