Breeding to increase folate levels in edible parts of plants, termed folate biofortification, is an economical approach to fight against folate deficiency in humans, especially in the developing world. Germplasm with elevated folates are a useful genetic source for both breeding and direct use. Spinach is one of the well-know vegetables that contains a relatively high amount of folate. Currently, little is known about how much folate, and their composition varies in different spinach accessions. The aim of this study was to investigate natural variation in the folate content and composition of spinach genotypes grown under controlled environmental conditions. The folate content and composition in 67 spinach accessions were collected from the United States Department of Agriculture (USDA) and Asian Vegetable Research and Development Center (AVRDC) germplasm collections according to their origin, grown under control conditions to screen for natural diversity. Folates were extracted by a monoenzyme treatment and analyzed by a validated liquid chromatography (LC) method. The total folate content ranged from 54.1 to 173.2 μg/100 g of fresh weight, with 3.2-fold variation, and was accession-dependent. Four spinach accessions (PI 499372, NSL 6095, PI 261787, and TOT7337-B) have been identified as enriched folate content over 150 μg/100 g of fresh weight. The folate forms found were H(4)-folate, 5-CH(3)-H(4)-folate, and 5-HCO-H(4)-folate, and 10-CHO-folic acid also varied among different accessions and was responsible for variation in the total folate content. The major folate vitamer was represented by 5-CH(3)-H(4)-folate, which on average accounted for up to 52% of the total folate pool. The large variation in the total folate content and composition in diverse spinach accessions demonstrates the great genetic potential of diverse genotypes to be exploited by plant breeders.