On-nanowire spatial band gap design for white light emission

Nano Lett. 2011 Nov 9;11(11):5085-9. doi: 10.1021/nl203529h. Epub 2011 Oct 21.

Abstract

We demonstrated a substrate-moving vapor-liquid-solid (VLS) route for growing composition gradient ZnCdSSe alloy nanowires. Relying on temperature-selected composition deposition along their lengths, single tricolor ZnCdSSe alloy nanowires with engineerable band gap covering the entire visible range were obtained. The photometric property of these tricolor nanowires, which was determined by blue-, green-, and red-color emission intensities, can be in turn controlled by their corresponding emission lengths. More particularly, under carefully selected growth conditions, on-nanowire white light emission has been achieved. Band-gap-engineered semiconductor alloy nanowires demonstrated here may find applications in broad band light absorption and emission devices.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Lighting / methods*
  • Macromolecular Substances / chemistry
  • Materials Testing
  • Molecular Conformation
  • Nanostructures / chemistry*
  • Nanostructures / ultrastructure*
  • Particle Size
  • Surface Properties

Substances

  • Macromolecular Substances