We report the characterization of BMS-911543, a potent and selective small-molecule inhibitor of the Janus kinase (JAK) family member, JAK2. Functionally, BMS-911543 displayed potent anti-proliferative and pharmacodynamic (PD) effects in cell lines dependent upon JAK2 signaling, and had little activity in cell types dependent upon other pathways, such as JAK1 and JAK3. BMS-911543 also displayed anti-proliferative responses in colony growth assays using primary progenitor cells isolated from patients with JAK2(V617F)-positive myeloproliferative neoplasms (MPNs). Similar to these in vitro observations, BMS-911543 was also highly active in in vivo models of JAK2 signaling, with sustained pathway suppression being observed after a single oral dose. At low dose levels active in JAK2-dependent PD models, no effects were observed in an in vivo model of immunosuppression monitoring antigen-induced IgG and IgM production. Expression profiling of JAK2(V617F)-expressing cells treated with diverse JAK2 inhibitors revealed a shared set of transcriptional changes underlying pharmacological effects of JAK2 inhibition, including many STAT1-regulated genes and STAT1 itself. Collectively, our results highlight BMS-911543 as a functionally selective JAK2 inhibitor and support the therapeutic rationale for its further characterization in patients with MPN or in other disorders characterized by constitutively active JAK2 signaling.