Current understanding of historic climate oscillations that have occurred over the past few million years has modified scientific views on evolution. Major climatic events have caused local and global extinction of plants and animals and have impacted the spatial distribution of many species. The endangered golden snub-nosed monkey (Rhinopithecus roxellana) currently inhabits three isolated regions of China: the Sichuan and Gansu provinces (SG), the Qinling Mountains in Shaanxi province (QL), and the Shennongjia Forestry District in Hubei province (SNJ). However, considerable uncertainty still exists about their historical dispersal routes under the influence of environment change. To date, two dispersal routes have been proposed: (1) the QL and SNJ populations originated from the SG population; and (2) the SG population recolonized from the QL and SNJ populations. We used the mitochondrial DNA complete control region to perform statistical assessments of the relative probability of alternative migration scenarios and the role of environmental change on the geographic dispersal of Rhinopithecus roxellana. Thirty haplotypes were identified from the three geographic regions and a high degree of genetic structure was observed. The most recent common ancestor among the mitochondrial DNA haplotypes was estimated to live around 0.47-1.88 million years ago and five notable haplotype clusters were found. Phylogenetic analysis and historical gene flow estimates suggested that the QL and SNJ populations originated from the SG population, with at least two dispersal events from the SG population occurring during the Pleistocene (1.17±0.70 and 0.53±0.30 Ma). Composite dispersal history of the golden snub-nosed monkey can be explained by both environmental change inducing global climate change and the influence of the Tibetan Plateau uplift. Such range shifts involved considerable demographic changes, as revealed in the dramatic decreases in population size during the last 25,000 years.
© 2011 Wiley Periodicals, Inc.