Benzene is an important industrial chemical. It is also an environmental pollutant recognized as a human carcinogen. Both prenatal and adult exposures to benzene are associated with the development of leukemia. To understand the mechanism of benzene-induced epigenetic variations, we investigated the expression and methylation patterns of CpG (phosphodiester bond between cytosine and guanine) islands in p15 and p16 promoter regions in 1,4-benzoquinone (1,4-BQ)-treated primary cultivated C57BL/6J mouse bone marrow cells in vitro. The cell toxicity of 1,4-BQ was evaluated by cell viability test, real-time PCR was used to measure the mRNA expression levels, and bisulfite sequencing PCR (BSP) was used to look into the methylation patterns. The cell viability test indicates that 1,4-BQ exhibited a dose-dependent toxicity to mouse bone marrow cells. After a 24-h exposure to 1,4-BQ at final concentrations of 0, 0.1, 1, and 10 μmol/L, the mRNA expression of p15 and p16 decreased with the increase in 1,4-BQ concentration. The BSP results gathered from the exposure and the control groups were the same. In summary, despite the observation that short-term exposure to 1,4-BQ primary cultivated mouse bone marrow cells decreased the p15 and p16 transcripts, with no influence by their gene promoter methylation.