Objective: To test the effect of recombinant interleukin-4 (IL-4) and recombinant osteoprotegerin (OPG) in suppressing bone resorption induced by polyethylene wear particles..
Methods: A cranial bone allograft was introduced into the air pouches induced on the back of BALB/c mice, followed by injection of 1 ml suspension of polyethylene particles into the pouches. The mouse models were then divided into 3 groups to receive injections of saline (control), IL-4 alone, or IL-4 and OPG into the pouches. The tissues were harvested 21 days after bone implantation for molecular and histological analyses.
Results: Polyethylene wear particles-stimulated inflammatory responses (increased cellular infiltration and IL-1 and TNF production) were markedly reduced by IL-4 treatment either alone or combined with OPG (P<0.05). Polyethylene particles significantly increased tartrate-resistant acid phosphatase (TRAP) staining and bone absorption of the implanted bone graft, and IL-4 treatment, either alone or combined with OPG, obviously reduced the osteolysis induced by polyethylene particles (P<0.05).
Conclusion: IL-4 offers protection against polyethylene wear debris-induced inflammation and bone resorption in this mouse model. IL-4 combined with OPG can be a feasible and effective therapeutic approach to the treatment and prevention of polyethylene wear debris-associated osteolysis and aseptic loosening of the prosthetic components.