Alzheimer's disease (AD) is the most common cause of dementia, clinically characterized by loss of memory and progressive deficits in different cognitive domains. An emerging disease-modifying approach to face the multifactorial nature of AD may be represented by the development of Multi-Target Directed Ligands (MTDLs), i.e., single compounds which may simultaneously modulate different targets involved in the neurodegenerative AD cascade. The structure of tacrine, an acetylcholinesterase (AChE) inhibitor (AChEI), has been widely used as scaffold to provide new MTDLs. In particular, its homodimer bis(7)tacrine represents an interesting lead compound to design novel MTDLs. Thus, in the search of new rationally designed MTDLs against AD, we replaced the heptamethylene linker of bis(7)tacrine with the structure of cystamine, leading to cystamine-tacrine dimer. In this study we demonstrated that the cystamine-tacrine dimer is endowed with a lower toxicity in comparison to bis(7)tacrine, it is able to inhibit AChE, butyrylcholinesterase (BChE), self- and AChE-induced beta-amyloid aggregation in the same range of the reference compound and exerts a neuroprotective action on SH-SY5Y cell line against H(2)O(2)-induced oxidative injury. The investigation of the mechanism of neuroprotection showed that the cystamine-tacrine dimer acts by activating kinase 1 and 2 (ERK1/2) and Akt/protein kinase B (PKB) pathways. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'.
Copyright © 2011 Elsevier Ltd. All rights reserved.