The separation of chemical vapor deposited (CVD) graphene from the metallic catalyst it is grown on, followed by a subsequent transfer to a dielectric substrate, is currently the adopted method for device fabrication. Most transfer techniques use a chemical etching method to dissolve the metal catalysts, thus imposing high material cost in large-scale fabrication. Here, we demonstrate a highly efficient, nondestructive electrochemical route for the delamination of CVD graphene film from metal surfaces. The electrochemically delaminated graphene films are continuous over 95% of the surface and exhibit increasingly better electronic quality after several growth cycles on the reused copper catalyst, due to the suppression of quasi-periodical nanoripples induced by copper step edges. The electrochemical delamination process affords the advantages of high efficiency, low-cost recyclability, and minimal use of etching chemicals.