Dispersion and damping of zone-boundary magnons in the noncentrosymmetric superconductor CePt3Si

J Phys Condens Matter. 2011 Nov 16;23(45):455704. doi: 10.1088/0953-8984/23/45/455704. Epub 2011 Oct 28.

Abstract

Inelastic neutron scattering (INS) is employed to study damped spin-wave excitations in the noncentrosymmetric heavy-fermion superconductor CePt3Si along the antiferromagnetic Brillouin zone boundary in the low-temperature magnetically ordered state. Measurements along the (1/2 1/2 L) and (H H 1/2 - H) reciprocal-space directions reveal deviations in the spin-wave dispersion from the previously reported model. The broad asymmetric shape of the peaks in energy signifies strong spin-wave damping by interactions with the particle-hole continuum. Their energy width exhibits no evident anomalies as a function of momentum along the (1/2 1/2 L) direction which could be attributed to Fermi surface nesting effects, implying the absence of pronounced commensurate nesting vectors at the magnetic zone boundary. In agreement with a previous study, we find no signatures of the superconducting transition in the magnetic excitation spectrum, such as a magnetic resonant mode or a superconducting spin gap, either at the magnetic ordering wavevector (0 0 1/2) or at the zone boundary. However, the low superconducting transition temperature in this material still leaves the possibility of such features being weak and therefore hidden below the incoherent background at energies ≲ 0.1 meV, precluding their detection by INS.

Publication types

  • Research Support, Non-U.S. Gov't