Duplication and partitioning in evolution and function of homoeologous Q loci governing domestication characters in polyploid wheat

Proc Natl Acad Sci U S A. 2011 Nov 15;108(46):18737-42. doi: 10.1073/pnas.1110552108. Epub 2011 Oct 31.

Abstract

The Q gene encodes an AP2-like transcription factor that played an important role in domestication of polyploid wheat. The chromosome 5A Q alleles (5AQ and 5Aq) have been well studied, but much less is known about the q alleles on wheat homoeologous chromosomes 5B (5Bq) and 5D (5Dq). We investigated the organization, evolution, and function of the Q/q homoeoalleles in hexaploid wheat (Triticum aestivum L.). Q/q gene sequences are highly conserved within and among the A, B, and D genomes of hexaploid wheat, the A and B genomes of tetraploid wheat, and the A, S, and D genomes of the diploid progenitors, but the intergenic regions of the Q/q locus are highly divergent among homoeologous genomes. Duplication of the q gene 5.8 Mya was likely followed by selective loss of one of the copies from the A genome progenitor and the other copy from the B, D, and S genomes. A recent V(329)-to-I mutation in the A lineage is correlated with the Q phenotype. The 5Bq homoeoalleles became a pseudogene after allotetraploidization. Expression analysis indicated that the homoeoalleles are coregulated in a complex manner. Combined phenotypic and expression analysis indicated that, whereas 5AQ plays a major role in conferring domestication-related traits, 5Dq contributes directly and 5Bq indirectly to suppression of the speltoid phenotype. The evolution of the Q/q loci in polyploid wheat resulted in the hyperfunctionalization of 5AQ, pseudogenization of 5Bq, and subfunctionalization of 5Dq, all contributing to the domestication traits.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • 3' Untranslated Regions
  • Alleles
  • Chromosomes / genetics*
  • Evolution, Molecular*
  • Exons
  • Gene Duplication
  • Genome, Plant*
  • Introns
  • Models, Genetic
  • Mutation
  • Phenotype
  • Ploidies
  • Polyploidy*
  • RNA, Messenger / metabolism
  • Triticum / genetics*

Substances

  • 3' Untranslated Regions
  • RNA, Messenger