Development of a prototype gantry system for preclinical x-ray phase-contrast computed tomography

Med Phys. 2011 Nov;38(11):5910-5. doi: 10.1118/1.3644844.

Abstract

Purpose: To explore the potential of grating-based x-ray phase-contrast imaging for clinical applications, a first compact gantry system was developed. It is designed such that it can be implemented into an in-vivo small-animal phase-contrast computed tomography (PC-CT) scanner. The purpose of the present study is to assess the accuracy and quantitativeness of the described gantry in both absorption and phase-contrast.

Methods: A phantom, containing six chemically well-defined liquids, was constructed. A tomography scan with cone-beam reconstruction of this phantom was performed yielding the spatial distribution of the linear attenuation coefficient μ and decrement δ of the complex refractive index. Theoretical values of μ and δ were calculated for each liquid from tabulated data and compared with the experimentally measured values. Additionally, a color-fused image representation is proposed to display the complementary absorption and phase-contrast information in a single image.

Results: Experimental and calculated data of the phantom agree well confirming the quantitativeness and accuracy of the reconstructed spatial distributions of μ and δ. The proposed color-fused image representation, which combines the complementary absorption and phase information, considerably helps in distinguishing the individual substances.

Conclusions: The concept of grating-based phase-contrast computed tomography (CT) can be implemented into a compact, cone-beam geometry gantry setup. The authors believe that this work represents an important milestone in translating phase-contrast x-ray imaging from previous proof-of-principle experiments to first preclinical biomedical imaging applications on small-animal models.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Absorption
  • Image Processing, Computer-Assisted
  • Phantoms, Imaging
  • Tomography, X-Ray Computed / instrumentation*