Reduced skeletal muscle free coenzyme A (CoASH) availability may decrease the contribution of fat oxidation to ATP production during high-intensity, submaximal exercise or, alternatively, limit pyruvate dehydrogenase complex (PDC) flux and thereby carbohydrate oxidation. Here we attempted to increase the muscle CoASH pool in humans, via pantothenic acid and cysteine feeding, in order to elucidate the role of CoASH availability on muscle fuel metabolism during exercise. On three occasions, eight healthy male volunteers (age 22.9 ± 1.4 yr, body mass index 24.2 ± 1.5 kg/m(2)) cycled at 75% maximal oxygen uptake (Vo(2max)) to exhaustion, followed by a 15-min work output performance test. Muscle biopsies were obtained at rest, and after 60 min and 91.3 ± 3.1 min of exercise (time to exhaustion on baseline visit) on each occasion. Two weeks following the first visit (baseline), 1 wk of oral supplementation with either 3 g/day of a placebo control (glucose polymer; CON) or 1.5 g/day each of d-pantothenic acid and l-cysteine (CP) was carried out prior to the second and third visits in a randomized, counterbalanced, double-blind manner, leaving a 3-wk gap in total between each visit. Resting muscle CoASH content was not altered by supplementation in any visit. Following 60 min of exercise, muscle CoASH content was reduced by 13% from rest in all three visits (P < 0.05), and similar changes in the respiratory exchange ratio, glycogenolysis (∼235 mmol/kg dry muscle), PCr degradation (∼57 mmol/kg dry muscle), and lactate (∼25 mmol/kg dry muscle) and acetylcarnitine (∼12 mmol(.)kg/dry muscle) accumulation was observed during exercise when comparing visits. Furthermore, no difference in work output was observed when comparing CON and CP. Acute feeding with pantothenic acid and cysteine does not alter muscle CoASH content and consequently does not impact on muscle fuel metabolism or performance during exercise in humans.