Cultivable bacteria from ancient algal mats from the McMurdo Dry Valleys, Antarctica

Extremophiles. 2012 Jan;16(1):105-14. doi: 10.1007/s00792-011-0410-3. Epub 2011 Nov 8.

Abstract

The McMurdo Dry Valleys in Antarctica are a favorable location for preservation of dormant microbes due to their persistent cold and dry climate. In this study, we examined cultivable bacteria in a series of algal mat samples ranging from 8 to 26539 years old. Cultivable bacteria were found in all samples except one (12303 years old), but abundance and diversity of cultivable bacteria decreased with increasing sample age. Only members of the Actinobacteria, Bacteroidetes, and Firmicutes were found in the ancient samples, whereas bacteria in the 8-year-old sample also included Cyanobacteria, Proteobacteria, and Deinococcus-Thermus. Isolates of the Gram-positive spore-forming bacterium Sporosarcina were found in 5 of 8 samples. The growth of these isolates at different temperatures was related to the phylogenetic distance among genotypes measured by BOX-PCR. These findings suggest that adaptation to growth at different temperatures had occurred among Sporosarcina genotypes in the Dry Valleys, causing the existence of physiologically distinct but closely related genotypes. Additionally, fully psychrophilic isolates (that grew at 15°C, but not 25°C) were found in ancient samples, but not in the modern sample. The preservation of viable bacteria in the Dry Valleys could potentially represent a legacy of bacteria that impacts on current microbial communities of this environment.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Antarctic Regions
  • Bacteria / classification
  • Bacteria / genetics
  • Bacteria / isolation & purification*
  • Microalgae / microbiology*
  • Phylogeny
  • Polymerase Chain Reaction
  • RNA, Ribosomal, 16S / genetics

Substances

  • RNA, Ribosomal, 16S