Manipulation of orthogonal neural systems together in electrophysiological recordings: the MONSTER approach to simultaneous assessment of multiple neurocognitive dimensions

Schizophr Bull. 2012 Jan;38(1):92-102. doi: 10.1093/schbul/sbr147. Epub 2011 Nov 10.

Abstract

Event-related potentials (ERPs) are a powerful tool in understanding and evaluating cognitive, affective, motor, and sensory processing in both healthy and pathological samples. A typical ERP recording session takes considerable time but is designed to isolate only 1-2 components. Although this is appropriate for most basic science purposes, it is an inefficient approach for measuring the broad set of neurocognitive functions that may be disrupted in a neurological or psychiatric disease. The present study provides a framework for more efficiently evaluating multiple neural processes in a single experimental paradigm through the manipulation of functionally orthogonal dimensions. We describe the general MONSTER (Manipulation of Orthogonal Neural Systems Together in Electrophysiological Recordings) approach and explain how it can be adapted to investigate a variety of neurocognitive domains, ERP components, and neural processes of interest. We also demonstrate how this approach can be used to assess group differences by providing data from an implementation of the MONSTER approach in younger (18-30 y of age) and older (65-85 y of age) adult samples. This specific implementation of the MONSTER framework assesses 4 separate neural processes in the visual domain: (1) early sensory processing, using the C1 wave; (2) shifts of covert attention, with the N2pc component; (3) categorization, with the P3 component; and (4) self-monitoring, with the error-related negativity. Although the MONSTER approach is primarily described in the context of ERP experiments, it could also be adapted easily for use with functional magnetic resonance imaging.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adolescent
  • Adult
  • Aged
  • Aged, 80 and over
  • Attention
  • Cognition / physiology*
  • Electroencephalography / methods*
  • Evoked Potentials / physiology*
  • Humans
  • Magnetic Resonance Imaging
  • Reaction Time