We have numerically investigated the magnetic response of the conductance peak structures in the transport gap of graphene nanoribbons. It is shown that the magnetic field induces a number of new conductance peaks within the transport gap of graphene nanoribbons confined by structural junctions. In addition, the magnetic field causes a shift of the conductance peak position and broadening of the peak width. This behaviour is due to the disappearance of zero conductance dips at the junction as a result of breaking time-reversal symmetry. Such behaviour is, however, not observed in the electronic transport of graphene nanoribbons confined by potential barriers, i.e. p-n-junctions. Thus, the magnetic response of conductance peaks may be used to distinguish the origin of the conductance peak structure within the transport gap observed in the experiments.
This journal is © The Royal Society of Chemistry 2012