Quantification of Thiopurine/UVA-Induced Singlet Oxygen Production

J Photochem Photobiol A Chem. 2011 Oct 15;224(1):16-24. doi: 10.1016/j.jphotochem.2011.09.001.

Abstract

Thiopurines were examined for their ability to produce singlet oxygen ((1)O(2)) with UVA light. The target compounds were three thiopurine prodrugs, azathioprine (Aza), 6-mercaptopurine (6-MP) and 6-thioguanine (6-TG), and their S-methylated derivatives of 6-methylmercaptopurine (me6-MP) and 6-methylthioguanine (me6-TG). Our results showed that these thiopurines were efficient (1)O(2) sensitizers under UVA irradiation but rapidly lost their photoactivities for (1)O(2) production over time by a self-sensitized photooxidation of sulfur atoms in the presence of oxygen and UVA light. The initial quantum yields of (1)O(2) production were determined to be in the range of 0.30-0.6 in aqueous solutions. Substitution of a hydrogen atom with a nitroimidazole or methyl group at S decreased the efficacy of photosensitized (1)O(2) production as found for Aza, me6-MP and me6-TG. (1)O(2)-induced formation of 8-oxo-7,8-dihydro-2'-dexyguanosine (8-oxodGuo) was assessed by incubation of 6-methylthiopurine/UVA-treated calf thymus DNA with human repair enzyme 8-oxodGuo DNA glycosylase (hOGG1), followed by apurinic (AP) site determination. Because more 8-oxodGuo was formed in Tris D(2)O than in Tris H(2)O, (1)O(2) is implicated as a key species in the reaction. These findings provided quantitative information on the photosensitization efficacy of thiopurines and to some extent revealed the correlations between photoactivity and phototoxicity.