A recent in situ infrared study on the selective hydrogenation of C5 dienes and monoenes over a Pd/Al(2)O(3) catalyst only reported incomplete vibrational assignments for some of the reagents, intermediates, and products encountered in that study. This work uses a combination of infrared absorption spectroscopy, Raman, and inelastic neutron scattering to characterize the vibrational spectra of pentane, 1-pentene, cis- and trans-2-pentene, cis- and trans-1,3-pentadiene, 1,4-pentadiene, cyclopentane, and cyclopentene. Ab initio calculations of the potential energy surface, geometry, and vibrational transition energies were performed and simulations of the vibrational spectra compared to the experimental data. Complete vibrational assignments for the majority of the molecules are presented. The potential for using gas-phase infrared measurements for studying heterogeneously catalyzed gas-phase reactions is also briefly considered.