The choroid plexus (CP) epithelium develops from the ependyma that lines the ventricular system, and plays a critical role in the development and function of the brain. In addition to being the primary site of CSF production, the CP maintains the blood-CSF barrier via apical tight junctions between epithelial cells. Here we show that the 22-member γ-protocadherin (γ-Pcdh) family of cell adhesion molecules, which we have implicated previously in synaptogenesis and neuronal survival, is highly expressed by both CP epithelial and ependymal cells, in which γ-Pcdh protein localization is, surprisingly, tightly restricted to the apical membrane. Multi-label immunostaining demonstrates that γ-Pcdhs are excluded from tight junctions, basolateral adherens junctions, and apical cilia tufts. RT-PCR analysis indicates that, as a whole, the CP expresses most members of the Pcdh-γ gene family. Immunostaining using novel monoclonal antibodies specific for single γ-Pcdh proteins shows that individual epithelial cells differ in their apically localized γ-Pcdh repertoire. Restricted mutation of the Pcdh-γ locus in the choroid plexus and ependyma leads to significant reductions in ventricular volume, without obvious disruptions of epithelial apical-basal polarity. Together, these results suggest an unsuspected role for the γ-Pcdhs in CSF production and demonstrate a surprising molecular heterogeneity in the CP epithelium.
© 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.