Malignant mesothelioma (MM) is caused by exposure to asbestos. Because MM has a latency period, short survival time, and has a poor response to current therapeutic regimes, long-term preventive strategies are required to suppress the advance of pathological states after asbestos exposure. Accumulating evidence suggests that adiponectin plays a crucial role in the regulation of energy metabolism by increasing AMP-activated protein kinase (AMPK) activation. Several studies have indicated that the activation of AMPK decreases cyclooxygenase (COX)-2 expression. Because high COX-2 levels correlated with a worse prognosis and survival rate in MM, we examined whether the adiponectin pathway suppresses MM cell growth through the AMPK/COX-2 pathway. In vivo, dietary fish oil (a potential promoter of adiponectin) decreased the growth rate of MM, which was accompanied by an increase in adiponectin and phospho-AMPK levels, and a decrease in COX-2 level. In vitro, adiponectin significantly impaired the cell proliferation rate of MM cell lines. These effects partly involved induction of growth arrest and apoptosis to MM cells. MM cells expressed both adiponectin receptors 1 and 2 (AdipoR1 and -R2) at mRNA and proteins levels. These receptors were functional, because adiponectin activated AMPK. Adiponectin treatment also significantly down-regulated protein levels of COX-2 and its downstream prostaglandin E(2). Finally, inhibitory analysis of AdipoR1/R2 by small interfering RNA knockdown suggests that adiponectin enhances AMPK activity and impairs the cell proliferation rate of MM cells, mainly via AdipoR1. These findings suggest that the induction or supplementation of adiponectin is an important tactic for developing therapeutic strategies against MM.