Background: Honokiol, a small active molecular compound extracted from magnolia, has recently been shown to inhibit hepatitis C virus (HCV) infection in vitro.
Aims: This study further characterized aspects of the HCV lifecycle affected by the antiviral functions of honokiol.
Methods: The influence of honokiol on HCV infection, entry, translation and replication was assessed in Huh-7.5.1 cells using cell culture-derived HCV (HCVcc), HCV pseudo-type (HCVpp) and sub-genomic replicons.
Results: Honokiol had strong antiviral effect against HCVcc infection at non-toxic concentrations. Combined with interferon-α, its inhibitory effect on HCVcc was more profound than that of ribavirin. Honokiol inhibited the cell entry of lentiviral particles pseudo-typed with glycoproteins from HCV genotypes 1a, 1b, and 2a, but not of the vesicular stomatitis virus. It had inefficient activity on HCV internal ribosome entry site (IRES)-translation at concentrations with significant anti-HCVcc effects. The expression levels of components of replication complex, NS3, NS5A and NS5B, were down-regulated by honokiol in a dose-dependent manner. It also inhibited HCV replication dose dependently in both genotypes 1b and 2a sub-genomic replicons.
Conclusions: Honokiol inhibits HCV infection by targeting cell entry and replication and, only at a concentration >30 μM, IRES-mediated translation of HCV life cycle. Based on its high therapeutic index (LD(50) /EC(90) = 5.4), honokiol may be a promising drug for the treatment of HCV infection.
© 2011 John Wiley & Sons A/S.