Channeling of fusion alpha-particle power using minority ion catalysis

Phys Rev Lett. 2011 Oct 21;107(17):175001. doi: 10.1103/PhysRevLett.107.175001. Epub 2011 Oct 17.

Abstract

Maintaining fuel ions hotter than electrons would greatly facilitate controlled nuclear fusion. The parameter range for achieving this temperature disparity is shown here to be enhanced by catalyzing the α-channeling effect (wave-induced simultaneous expulsion and cooling of α particles) through minority-ion heating. Specifically, a wave can extract energy from hot α particles and transfer it to colder minority ions, which act as a catalyst, eventually forwarding the energy to still colder fuel ions through collisions. In comparison with the traditional α-channeling mechanism, the requirements are thereby relaxed on the waves that accomplish the α channeling, which no longer have to interact simultaneously with α particles and fuel ions. Numerical simulations illustrate how the new scheme may increase, for example, the effective fusion reactivity of mirror-confined plasmas.