Nanosized hydrotalcite-like compounds (HTlc) with different chemical composition were prepared and used to study protein adsorption. Two soft proteins, myoglobin (Mb) and bovine serum albumin (BSA), were chosen to investigate the nature of the forces controlling the adsorption and how these depend on the chemical composition of the support. Both proteins strongly interact with HTlc exhibiting in most cases a Langmuir-type adsorption. Mb showed a higher affinity for Nickel Chromium (NiCr-HTlc) than for Nickel Aluminum (NiAl-HTlc), while for BSA no significant differences between supports were found. Adsorption experiments in the presence of additives showed that proteins exhibited different types of interactions onto the same HTlc surface and that the adsorption was strongly suppressed by the addition of disodium hydrogen phosphate (Na(2)HPO(4)). Atomic force microscopy images showed that the adsorption of both proteins onto nanoparticles was followed by the aggregation of biocomposites, with a more disordered structure for BSA. Fluorescence measurements for adsorbed Mb showed that the inorganic nanoparticles induced conformational changes in the biomolecules; in particular, the interactions with HTlc surface quenched the tryptophan fluorescence and this process was particularly efficient for NiCr-HTlc. The adsorption of BSA onto the HTlc nanoparticles induced a selective quenching of the exposed fluorescent residues, as indicated by the blue-shift of the emission spectra of tryptophan residues and by the shortening of the fluorescence decay times.
Copyright © 2011 Elsevier Inc. All rights reserved.