Cholesterol is a major component of membrane lipid rafts. It is more abundant in the brain than in other tissues and plays a critical role in maintaining brain function. We report here that a significant enhancement in apoptosis in rat cerebellar granule neurons (CGNs) was observed upon incubation with 5mM K(+) /serum free (LK-S) medium. Cholesterol enrichment further potentiated CGN apoptosis incubated under LK-S medium. On the contrary, cholesterol depletion using methyl-beta-cyclodextrin protected the CGNs from apoptosis induced by LK-S treatment. Cholesterol enrichment, however, did not induce apoptosis in CGNs that have been incubated with 25mM K(+) /serum medium. Mechanistically, increased I(K) currents and DNA fragmentation were found in CGNs incubated in LK-S, which was further potentiated in the presence of cholesterol. Cholesterol-treated CGNs also exhibited increased cAMP levels and up-regulation of Kv2.1 expression. Increased levels of activated form of PKA and phospho-CREB further supported activation of the cAMP/PKA pathway upon treatment of CGNs with cholesterol-containing LK-S medium. Conversely, inhibition of PKA or small G protein Gs abolished the increase in I(K) current and the potentiation of Kv2.1 expression, leading to reduced susceptibility of CGNs to LK-S and cholesterol-induced apoptosis. Our results demonstrate that the elevation of membrane cholesterol enhances CGN susceptibility to apoptotic stimuli via cAMP/PKA/CREB-dependent up-regulation of Kv2.1. Our data provide new evidence for the role of cholesterol in eliciting neuronal cell death.
© 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.