Solvent-resistant ultraflat gold using liquid glass

Langmuir. 2012 Jan 17;28(2):1347-50. doi: 10.1021/la204299h. Epub 2011 Dec 16.

Abstract

Templating against atomically flat materials allows creation of smooth metallic surfaces. The process of adding the backing (superstrate) to the deposited metals has proven to be the most difficult part in producing reliable, large-area, solvent-resistant substrates and has been the subject of recent research. In this paper we describe a simple and inexpensive liquid glass template-stripping (lgTS) method for the fabrication of large area ultraflat gold surfaces. Using our lgTS method, ultraflat gold surfaces with normals aligned along the <111> crystal plane and with a root-mean-square roughness of 0.275 nm (over 1 μm(2)) were created. The surfaces are fabricated on silica-based substrates which are highly solvent resistant and electrically insulating using silicate precursor solution (commonly known as "liquid glass") and concomitant mild heat treatment. We demonstrate the capabilities of such ultraflat gold surfaces by imaging nanoscale objects on top and fabricating microelectrodes as an example application. Because of the simplicity and versatility of the fabrication process, lgTS will have wide-ranging application in imaging, catalysis, electrochemistry, and surface science.