Recently, the inflammatory cytokine IL-6 has been reported as a potent inducer of epithelial-mesenchymal transition (EMT) in breast cancer cells with an epithelial phenotype. Furthermore, EMT induces stem cell features in normal and transformed mammary cells. We explored whether IL-6-induced EMT promoted the generation of breast cancer stem-like cells (BrCSCs) in epithelial-like breast cancer cells, and whether the cytokines EGF and bFGF, analogous to IL-6, per se induced epithelial-mesenchymal transition, resulting in the enrichment of BrCSCs in mammosphere cultures. Herein, we provide evidence that IL-6 is capable of generating CD44+ cells with stem-like properties through induction of the EMT in the epithelial-like T47D breast cancer cells. We also show that mammosphere cultures of epithelial-like breast cancer cells, T47D, MCF7, ZR-75-1 and MDA-MB-453 cells, consistently generated stem-like cancer cells solely as a result of the EGF and bFGF cytokines in the mammosphere media mediating EMT. This finding demonstrated the link between the inflammatory cytokine IL-6 and BrCSCs and identified an important mechanism for the enrichment of BrCSCs in mammosphere cultures. Thus, EMT appears to be a critical mechanism for the induction of cancer cells with stem-like properties, and EMT of non-stem cancer cells could be a source of CSCs.