Microbial diversity of biofilm communities in microniches associated with the didemnid ascidian Lissoclinum patella

ISME J. 2012 Jun;6(6):1222-37. doi: 10.1038/ismej.2011.181. Epub 2011 Dec 1.

Abstract

We assessed the microbial diversity and microenvironmental niche characteristics in the didemnid ascidian Lissoclinum patella using 16S rRNA gene sequencing, microsensor and imaging techniques. L. patella harbors three distinct microbial communities spatially separated by few millimeters of tunic tissue: (i) a biofilm on its upper surface exposed to high irradiance and O(2) levels, (ii) a cloacal cavity dominated by the prochlorophyte Prochloron spp. characterized by strong depletion of visible light and a dynamic chemical microenvironment ranging from hyperoxia in light to anoxia in darkness and (iii) a biofilm covering the underside of the animal, where light is depleted of visible wavelengths and enriched in near-infrared radiation (NIR). Variable chlorophyll fluorescence imaging demonstrated photosynthetic activity, and hyperspectral imaging revealed a diversity of photopigments in all microhabitats. Amplicon sequencing revealed the dominance of cyanobacteria in all three layers. Sequences representing the chlorophyll d containing cyanobacterium Acaryochloris marina and anoxygenic phototrophs were abundant on the underside of the ascidian in shallow waters but declined in deeper waters. This depth dependency was supported by a negative correlation between A. marina abundance and collection depth, explained by the increased attenuation of NIR as a function of water depth. The combination of microenvironmental analysis and fine-scale sampling techniques used in this investigation gives valuable first insights into the distribution, abundance and diversity of bacterial communities associated with tropical ascidians. In particular, we show that microenvironments and microbial diversity can vary significantly over scales of a few millimeters in such habitats; which is information easily lost by bulk sampling.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Base Sequence
  • Biofilms*
  • Carbon / metabolism
  • Chlorophyll / analysis
  • Cluster Analysis
  • Cyanobacteria / genetics
  • Cyanobacteria / physiology*
  • Ecosystem
  • Light
  • Optical Imaging
  • Oxygen / metabolism
  • Photosynthesis
  • Principal Component Analysis
  • Prochloron / genetics
  • Prochloron / physiology*
  • RNA, Ribosomal, 16S / genetics
  • Urochordata / microbiology*

Substances

  • RNA, Ribosomal, 16S
  • Chlorophyll
  • chlorophyll d
  • Carbon
  • Oxygen