1. Resting myoplasmic [Ca2+] and [Ca2+] transients (delta [Ca2+]) were monitored using Fura-2 fluorescence and Antipyrylazo III absorbance signals from voltage-clamped segments of cut frog skeletal muscle fibres in the presence and absence of 0.5 mM-caffeine. The rate of release (Rrel) of calcium from the sarcoplasmic reticulum was calculated from delta [Ca2+]. 2. delta [Ca2+] and Rrel were increased in caffeine for all pulses. The decline of delta [Ca2+] was slower after a given pulse in caffeine than without caffeine. Resting [Ca2+] was slightly elevated in caffeine. 3. The voltage dependence of the peak value of Rrel and of the steady level of Rrel at the end of a 60-120 ms pulse were both shifted towards more negative voltages in caffeine. For relatively small pulses the voltage at which a given release waveform was observed was also shifted to more negative voltages. 4. Intramembrane charge movements measured in the same fibres in which the above changes in Rrel were observed showed no significant changes in caffeine. 5. In caffeine calcium release continued for many milliseconds after the end of a short (10 ms) pulse. Continued release after a pulse was not observed without caffeine and was probably due to positive feedback of elevated [Ca2+] on calcium release resulting from calcium-induced calcium release in caffeine. 6. Intramembrane charge movements after short pulses showed no change in caffeine that could account for the continued calcium release after the pulse. 7. Continued release after short pulses in caffeine decreased as the pulse duration was increased and was absent for pulses of 60 ms or longer. Rrel also inactivated during such pulses. 8. Relatively large and long conditioning pulses in caffeine suppressed both the peak Rrel and the continued release after short pulses. Peak release and continued release after short pulses recovered in parallel with increasing recovery time following suppression by a conditioning pulse in caffeine. 9. These results indicate that in the presence of caffeine, charge movement and calcium-induced calcium release both contribute significantly to the activation of sarcoplasmic reticulum calcium release during fibre depolarization. Release activated by either mechanism appears to be inactivated by calcium-dependent inactivation. A significant contribution of calcium-induced calcium release during depolarization in the absence of caffeine is not ruled out by present observations.