Requirement of myeloid cell-specific Fas expression for prevention of systemic autoimmunity in mice

Arthritis Rheum. 2012 Mar;64(3):808-20. doi: 10.1002/art.34317.

Abstract

Objective: The death receptor Fas is a critical mediator of the extrinsic apoptotic pathway, and its role in mediating lymphoproliferation has been extensively examined. The present study was undertaken to investigate the impact of myeloid cell-specific loss of Fas.

Methods: Mice with Fas flanked by loxP sites (Fas(flox/flox) ) were crossed with mice expressing Cre under control of the murine lysozyme M gene promoter (Cre(LysM) ), which functions in mature lysozyme-expressing cells of the myelomonocytic lineage. The genotype for Cre(LysM) Fas(flox/flox) mice was verified by polymerase chain reaction and flow cytometric analysis. Flow cytometric analysis was also used to characterize myeloid, dendritic, and lymphoid cell distribution and activation in bone marrow, blood, and spleen. Luminex-based assays and enzyme-linked immunosorbent assays were used to measure serum cytokine/chemokine and immunoglobulin levels. Renal damage or dysfunction was examined by immunohistochemical and immunofluorescence analysis.

Results: Cre(LysM) Fas(flox/flox) mice exhibited a systemic lupus erythematosus (SLE)-like disease that included leukocytosis, splenomegaly, hypergammaglobulinemia, antinuclear autoantibody and proinflammatory cytokine production, and glomerulonephritis. Loss of Fas in myeloid cells increased levels of both Gr-1(low) and Gr-1(intermediate) blood monocytes and splenic macrophages and, in a paracrine manner, incited activation of conventional dendritic cells and lymphocytes in Cre(LysM) Fas(flox/flox) mice.

Conclusion: Taken together, these results suggest that loss of Fas in myeloid cells is sufficient to induce inflammatory phenotypes in mice, reminiscent of an SLE-like disease. Thus, Fas in myeloid cells may be considered a suppressor of systemic autoimmunity.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Autoimmune Diseases / immunology
  • Autoimmune Diseases / pathology
  • Autoimmune Diseases / prevention & control*
  • Autoimmunity*
  • Bone Marrow Cells / immunology
  • Bone Marrow Cells / metabolism*
  • Bone Marrow Cells / pathology
  • Cytokines / metabolism
  • Dendritic Cells / immunology
  • Dendritic Cells / metabolism
  • Dendritic Cells / pathology
  • Female
  • Flow Cytometry
  • Immunity, Innate
  • Kidney / metabolism
  • Kidney / pathology
  • Lymphocyte Activation
  • Lymphocytes / immunology
  • Lymphocytes / metabolism
  • Lymphocytes / pathology
  • Macrophages / immunology
  • Macrophages / metabolism
  • Macrophages / pathology
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Spleen / metabolism
  • Spleen / pathology
  • fas Receptor / immunology
  • fas Receptor / metabolism*

Substances

  • Cytokines
  • Fas protein, mouse
  • fas Receptor